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ABSTRACT

It is well-docu[liented (Hitschfeld and Bordan 1954, Meneghini
1978, Haddad et al 1993) that there are significant ambigui-
ties inherent in the determination of a particular vertical rain
intensity profile from agiventime profile of radar echo pow-
ers measured by a downward- looking (spaceborne or airborne)
radar at a single attenuating frequericy. Indeed, one already
knows {Haddad et al 1993) how to vary the parameters of the
reflectivity- rainrate(Z — R) and attenuation- rainrate (k -- )
relationships in order to produce several substantialy different
rain rate profiles which would produce the same radar power pro-
file. Imposing the additional constraint that the path-averaged
rain- rate be a given fixed number does reduce the ambiguities
but falls far short of eliminating them (Haddad et al 1994).
While we have derived the formulas to generate al determin-
istic mutually arubiguous rain rate profiles from agiven profile
of received radar reflectivities, there remains to produce a quan-
titative measure to assess how likely each of these deterministic
profiles is, what the appropriate “average” profile should be, and
what the “variance” of these multiple solutions is. Of course, in
order to do this, one needs to spell out the stochastic constraints
that can alow us to make sense of the words “average” and
“variance“ in a mathematicaly rigorous way. Such a quantita-
tive approach would be particularly well-suited for such systems
as the spaceborne Ku-band Precipitation Radar of the Tropical
Rainfall Measuring Mission (TRMM). Indeed, one would then
be able to use the radar reflectivities measured by the TRMM
radar to estimate the rain rate profile that would most likely
have p1 educed the measurements, as well as the uncertainty in
the estimated rain rates, as a function of range. This paper
presents an optimal approach to solve this problem.

MATHEMATICAL APPROACH

For simplicity, we start with the model that the effective reflec-
tivity p(r), measured at range r by a downward-looking mono-
static narrow-band radar such as the TRMM Precipitation Radar,
is proportional to the reflectivity coefficient Z of the rain at
range r, and to the accumulated attenuation from range O (the
top of the cloud) to range r. Calling k(r) (resp. k(r)) the at-
tenuation coefficient (resp. rain rate) at range r, we assume for
simplicity that Z = aR? and k = aR? for some value of the
parameters @, b, aand 8, and that the calibrated reflectivity is
therefore given by
b1n=-0.1
()= aR(r)°10 )
Treating a, b, a and B as parameters, the solution to equation
(1) can be written as
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Equation (2) suggests that if the rain parameters me not known
exactly, multiple solutions for £ can exits. In (Haddad et d
1993), we describe just how mutually ambiguous these multiple
solutions can get. In thesame paper, we also show that using
the surface returu as a reference does not solve the ambiguity
problem. Since one has to ‘live with” these ambiguities, it is
very important to know how likely each of the multiple solutions
is. specificaly, given some a-priori “statistical” constraints on
the variables involved, one would like to find what the “average’
solution to (2). Using average values for the rain parameters is
still not suflicient because even when exact values for a, b, « and
B are given, it is known that the numerical implementation of
equation (2) gives a numerically unstable “inversion” agorithm].

Thus onc is naturally led to a stochastic filtering approach.
One would like to introduce a “measure” on the set of al ambigu-
ous profiles giving rise to the same measured reflectivity profile,
and try to find the “average’ profile with respect to this measure
on this set, aong with an estimate of the mean difference be-
tween the members of this set of mutually ambiguous profiles. In
(Haddad et a, 1993), we described an algorithm to compute the
joint probability density function ‘P for {If(r), a &, «, 3} given
measurements Of p(r). The ‘average” rain profile and the “mean
deviation” with al the mutually ambiguous profiles can then be
obtained from the moments of ‘P. Indeed, the results reported in
(Haddad et a, 1993) have been very encouraging. In particular,
in the case where a, b, @ and 8 are assumed known, this ap-
proach yields a stable inversion algorithm which does not require
any surface reference information. But calculating the full den-
sity function requires large amounts of computer memory and
CPU time, too large to make the algorithm useful in anywhere
near real-time. In order to reduce the amount of computer re-
sources required, rather than calculating P itself, one can try
to compute its mean and covariance directly. This amounts to
deriving the extended Kalman filter appropriate to the problem
at hand. We now describe how this is done.

First, we need to specify the apriori constraints on tbe
“state variables” R(r), a b, a,8 and c(r) = fy aKP.For sim-
plicity, we shdl assume that a, b, « and 8 are constant, that
the only constraint on c is that it be the integra with respect
tor of af(r)?, and we express the requirement that R itself be
positive and continuous by writing

R(T) = eTr)HAr 3)
where z is the (mathematically) simplest continuous stochas-
tic process and A a suitable factor (possibly zero) to be deter-
mined. Specifically, without further a-priori information, wc
assurie that z(r) = z(O) + ah(r), where z(0) and b(r) are in-
dependent, z(0) itself is Gaussian with mean 70 and ‘variance
031 and the process b{r)has independent 0-mean Gaussian in-



crements with variance equal to the extent in range of theincre-
ment interval. ‘1'bus, in effect, we are assuming that the apriori
constraints on the evolution of log(R) with range r are those of
standard Brownian motion, up to a possible ‘drift"terinAr.

Now that wc have established the apriori constraints on the
dynamics of our variables, we must make explicit the function
h(r) expressing our measurement from range r in terms of our
state variables. From equation (I), one can see that

h(r) = log(a) 4b(x(r) + Ar)-0.2log(10)c(r) 4 Noise.  (4)

L.et us write on for the r.m.s. noise level in the measurements,
which, for simplicity, we shall attribute here to Rayleigh fading
only (system noise can be taken into account, at the expense of
making the exposition somewhat more cumbersome). Since our
data consist of the averaged power of M independent pulses, the
noiscterm in (4) would be the logarithmn of the average of the
squared-magnitudes of M independent standard complex Gaus-
sian variables. Hence, as soon as M > 4, it is quite reasonable
to assumne that this noise term is itself approximately a O mean
normal variable with variance o% ~1/M.

We are now ready to apply the standard machinery of stochas-

tic filtering to obtain the best estimate f¢(r) of the rain rate at
range r given al the observations. Since the relation de¢/dr =
al? is non-linear, we cannot usc a straightforward Kalman fil-
ter t0 solve the problem. Wc chose to use an extended Kalman
filter approach, using a first-order Taylor series linearization to
obtain both the forward estimate (starting fromn the top of the
cloudr = O) and the backward estimate (starting from the ocean
surface). The theory and details behind the technique can be
found for example in (Qksendal, 1985). For completeness, we
sumnmarize the flow of the particular algorithm in the case at
hand, when the parameters a,b, o and 8 are assumed known.
First, one must obtain estimates #(r) and &(r) of the state vari-
ablesr and ¢ at all ranges r based on al earlier measurernents
obtained for r' < r, along with their covariances p,,(r), pa(r)
and p..(r). To do this, one must start with

£(0) = mo ®)
) = 0 (t)
pec(0) = 0 @)
Pe-(0) -0 (8)
pas(0) = 0. 9)

Then, given our estimates at range r, the estimates at range
r+4 6 can be obtained in two steps, by first accounting for the
changes in the dynamics using the forinulas

Hr 4 8) = #(r) (lo)
r + 6) = r) + Q[”en(z(t)nt)d, (11)
Pec(r 4 6) = pu(r)+ 06 (12)
Bor (7 + )= palr) + oﬂ/’ PO ()dt (13)
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then by accounting for the measurement z(r + é) obtained from
range r -t 6 using the formulas

bjrz(r + 6) — 0.210g(10)pe.,
A (18)

bpec(r+46) - 02105(10)
et ke (19)
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where 1) = (0.21og(10))?pec(r + 6) - 2(0.210g(10))bp,, (r + 6) +
b, (r48)40%, and A = z(r+4 6)- (log(a)+b(F(r+ c$)+Ar)-
0.2 logier + 6)). ‘f 'he backward portion of the algorithm
is similar, except for the obvious sign changes that are then
necessary. The resulting procedure is orders of magnitude more
efficient than the full density function approach described in
(Haddad et al, 1993). Its extension the the case of coupled
Z-R and k- R relations discussed in (Haddad et al, 1994) is
straightforward.

APPLICATIONS

Before we can describe practical applications, wc still need to
discuss the choice one must make for the parameters 7o, 0o,
o and A. Although in practice it turns out that the exact val-
ues do not affect the estimation algorithm siguificantly (after
al, when a, b, @ and 8 arc known, the theoretical solution is
unique), one should certainly make an effort to give them phys-
ically reasonable and realistic. values. To do that, we usc the
apriori constraints which we have imposed. It follows from (3)
that the expected value of the rain-rate R(0) at the top of the
rain column is

E{ R(0)} = emth 17
and its relative variance is
R(0 2 2
g{(S{g 0 ) }* 1 w0

In practice, we set a minimum “threshold onset” value fmin for
the smallest significant rain rate we expect at the top of the
rain colurnn, along with some estimate for the associated mean
relative uncertainty. Equation (18) then implies that we should

choose )
o2 = log (1 +E { (ﬁim - 1) }) (19)

and (17) in turn implies that we should then choose

1
mo =- log(Rmin) - '203 (20)

The choice of A is somewhat more problematic. We do know
that, a priori, by definition, the rain rate should initialy increase
with range from the a-priori value K.in. This would imply a
positive drift A.To get a value for A, wc look at the terminal
behavior of K. Writing R'(r) for R'(r) = R(r, - 1), where r,
is the range of the surface, and if we reverse the congtraint (3)
in titne to apply it to R'(r), one finds that the “apriori” (with
time reversed) expected value for R’ is given by

F{R’(r)} - e"tr,+'%dz.+z\r, i e(%a’—z\)r (21)
Since we have a priori no reason to expect therain rate to in-
crease or decrease as one moves up from the bottom of the rain
colummn, it is natural to choose the value

1 2
A= 59 (22)
Last, we must decide on a value for o. In practice, we would
expect the average rain rate H,,, over the rain column to be
greater than the minimum value R, a the top of the column
(otherwise our data is of little interest). From equation (3) and
our choice of A, one can verify that
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, It is therefore natural to choose ¢ by making this quantity equal
to an expected average value Hayg-

The graph to the right shows the estimated rain rate ob-
tained using the algorithmn described above, when the input was
one of the radar reflectivity profiles measured by JPI’s ARMAR

radar (Durden et al, 1992) over the Western Pacific Ocean dur-
ing the TOGA-COARE experiment in February 1993. Details
of the participation of ARMAR in COARY can befound in (Li
et al, 1993). Wc used the values a = 300, b= 1.4, o = 0.026 and
B, 1.11,along with R, = 1 mm/hr (£ 50%), and Haw, = 1_0
rum/hr. For comparison, the graph below reproduces the €S-
mates obtained using our full-density-functiorl code (from Had-
dad et al, 1993), where we had assumed that 200 < a <400,
14 <b< 16, 0.018 < a <0.034 and 3= 1.08. A more compre-

hensive anaysis of the algorithm described above will be ready
shortly.
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